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1. Überblick über wichtige Aspekte bei der Einzelfalldiagnostik
2. Berechnung eines frequentistischen Konfidenzintervalls
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Bayesianische Statistik als alternativer statistischer Ansatz zur 
frequentistischen Statistik:

- Frequentistisches 95% KI: Wenn man unendliche viele Zufallsstichproben 
ziehen würde (bzw. in der Einzelfalldiagnostik eine Person unendlich oft 
testen würde, ohne dass diese sich an die vorherigen Testungen erinnert), 
enthalten 95% aller gebildeten KIs den wahren Wert.

- Bayesianisches 95% KI: Gegeben meiner Vorannahme (Prior), befindet 
sich der wahre Wert mit 95% Wahrscheinlichkeit zwischen den 
errechneten Intervallgrenzen.

# 3

à Ermöglicht den Einbezug von Vorwissen, was in der 
Einzelfalldiagnostik sehr praktisch sein kann!

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 



Lehrstuhl für Psychologische 
Methodenlehre und Diagnostik 

der Ludwig-Maximilians-
Universität München

Vorlesung 
Grundlagen der 

Diagnostik
SS 25

# 4

Grundprinzipien Bayesianische Statistik

„Im Satz von Bayes wird eine bestehende Erkenntnis über den zu untersuchenden 
Parameter (die A-priori Verteilung, kurz Prior) mit den neuen Erkenntnissen aus den 
Daten kombiniert (Likelihood), woraus eine neue, verbesserte Erkenntnis (A-
posteriori Verteilung, kurz Posterior) resultiert.“ (nach Wikipedia)

Posterior ∝ Likelihood x Prior 
Lies: „Die Posterior ist proportional (∝) zum Produkt aus Likelihood und Prior“

(McElreath (2020): Kap. 2+3)

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 

https://de.wikipedia.org/wiki/Bayessche_Statistik
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Grundprinzipien Bayesianische Statistik

Beispiel: 

• Bob hat einen Testwert von 80 IQ-Punkten im Intelligenztest (x = 80)
• Testwertverteilung: X ~ N(IQ, σₓ! ! (1 − 𝑅𝑒𝑙))
• Wobei in der Formel…

• „IQ“ für die wahre Intelligenz von Bob steht die uns eigentlich interessiert 
• „Rel“ für die Reliabilität des Testwerts steht, die als bekannt vorausgesetzt wird
• „σₓ!“ für die Varianz des Testwerts steht, in diesem Beispiel 225 wegen IQ-Normwerten

• Die Testwertverteilung entspricht wieder dem vereinfachten Testmodell, 
welches wir auch zur Berechnung der approximativen frequentistischen 
Konfidenzintervalle herangezogen haben (siehe LE9).

# 5
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Grundprinzipien Bayesianische Statistik

Likelihood
• Verteilungsfunktion, die einer beobachteten Variable zugeordnet ist 

à „Wie plausibel ist es die tatsächlich vorliegenden Daten zu beobachten 
gegeben bestimmter Werte für die Modellparameter?“

• Plausibilität einen Testwert von x = 80 zu beobachten in Abhängigkeit von 
verschiedenen wahren IQ-Werten

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2020: Kap. 2+3)
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7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 

Exkurs: Einen einzelnen Wert auf der Likelihood Kurve könnte 
man in R für das vorliegende Beispiel wie folgt berechnen:
dnorm(80, mean = IQ, sd = sqrt(225*(1-0.7)))
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Grundprinzipien Bayesianische Statistik

Likelihood 
• Formalisiert das Wissen, das wir durch die Daten erlangen
• Hängt von der Reliabilität ab: Je unreliabler der Test, desto breiter ist die 

Likelihood (d.h. desto plausibler sind wahre Werte weit weg vom Testwert)

Rel = .70 Rel = .98

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2020: Kap. 2+3)
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Grundprinzipien Bayesianische Statistik

Prior
• Die Prior-Verteilung ist eine Vorannahme, die definiert, wie plausibel 

mögliche wahre Werte in der Population a priori sind (d.h., bevor man die 
Daten beobachtet hat)

• Diese Vorannahmen können sehr vage sein („uninformativ“), oder 
substantielles Vorwissen enthalten („informativ“)

• Je sicherer man sich vorher schon ist, desto schmalgipfliger ist die Prior 
um den erwarteten Wert herum (à geringere Varianz der Verteilung)

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 2+3)
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Grundprinzipien Bayesianische Statistik

Posterior
• „Updating process“: 

àWir aktualisieren unser Vorwissen 
mit Hilfe der erhobenen Daten

àdaraus resultiert eine (verbesserte) 
Wahrscheinlichkeitsverteilung

• Die Posterior-Verteilung quantifiziert die 
Plausibilität möglicher wahrer Werte 
nachdem man die Testwerte beobachtet 
hat

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 2+3; untere Abbildung: S. 38)
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Grundprinzipien Bayesianische Statistik

Highest Densitiy Interval (HDI)
• Ein bestimmtes Intervall definierter 

Masse der Posterior stellt das 
bayesianische KI-Äquivalent dar 
• z.B. 95% der Fläche à 95% HDI

• Unter Annahme der Prior kann man mit 
diesen bayesianischen KIs dann 
Interpretationen über den wahren Wert 
vornehmen 
• z.B. „Der wahre Wert liegt mit 95% 

Wahrscheinlichkeit zwischen...“

Exkurs: Im Gegensatz zu HDIs gibt es auch „equal-tailed intervals“ (ETIs). Die genaue Definition 
eines HDI haben wir hier nicht besprochen und ist in der Praxis meist irrelevant. HDIs und ETIs 
unterscheiden sich stark nur bei sehr schiefen Posteriori Verteilungen.

McElreath, 2018: Kap. 1-3
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Grundprinzipien Bayesianische Statistik

Bester Punktschätzer
• Frequentismus: beobachteter Wert ist 

die beste Punkt-Schätzung für den 
wahren Wert 

• Bayes: Modus der Posterior d.h., der 
Gipfel der Verteilung) ist die beste 
Punkt-Schätzung für den wahren Wert

Hinweis: Alternativ zum Modus wird häufig auch der 
Erwartungswert oder der Median der Posterior als 
bayesianischer Punkt-Schätzer verwendet. 

 

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 1-3)
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Beispiel 1: kein Vorwissen

• Testwert = 80 IQ-Punkte, Reliabilität = .85 
• flache („uninformative“) Prior 

à Jeder IQ-Wert von –∞ bis +∞ ist a priori gleich wahrscheinlich

à Frequentistisches KI und Bayesianisches HDI (und Punktschätzer) fallen 
zusammen
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Beispiel 2: Vorwissen vorhanden

• Testwert = 80 IQ-Punkte, Reliabilität = .85
• Prior: IQ ~ N(100, 152) à die Prior ist normalverteilt mit einem Mittelwert von 100 

und einer Varianz von 152 bzw. SD von 15

à Der wahrscheinlichste Bayes-Punktschätzer ist nicht der Testwert von 80, 
sondern liegt bei 82.6
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Beispiel 3: Spezifisches Vorwissen vorhanden I

• Testwert = 80 IQ-Punkte, Reliabilität = .85
• Prior: IQ ~ N(130, 152) à die Prior ist normalverteilt mit einem Mittelwert von 130 

und einer Varianz von 152 bzw. SD von 15 (Annahme, weil wir wissen, dass die 
begutachtete Person aus der Population Mathematikstudierender kommt)
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à Der wahrscheinlichste Bayes-Punktschätzer ist liegt in diesem Fall bei 86.5
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Beispiel 3: Spezifisches Vorwissen vorhanden II

• Testwert = 80 IQ-Punkte, Reliabilität = .60
• Prior: IQ ~ N(130, 152) à die Prior ist normalverteilt mit einem Mittelwert von 130 

und einer Varianz von 152 bzw. SD von 15 (wie auf der Folie vorher)

à Je unreliabler das Messinstrument, desto stärker der Einfluss der Prior und desto breiter 
ist das bayesianische HDI (und auch das frequentistische KI).
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Fazit: Bayes in der Einzelfalldiagnostik

• Das Bayes-Theorem stellt eine „Berechnungsvorschrift“ dar, wie man 
Vorwissen mit neuen Daten verrechnen kann. Das bisher Bekannte (die Prior) 
wird mit den neuen Daten aktualisiert, um so den aktualisierten Wissensstand 
zu erhalten (die Posterior). 

• Damit kann etwas formalisiert werden, was in der Praxis ohnehin implizit 
gemacht wird: Urteile mithilfe externer Informationen anzupassen, abhängig 
davon, wie stark mein Vertrauen in meine diagnostische Messung ist.

• Wenn man ein reliables Messinstrument hat, kann man dem Messwert relativ 
stark vertrauen, und das Vorwissen ist relativ irrelevant

• Wenn das Messinstrument schlecht ist, kann es ratsam sein, vorhandenes 
Wissen einzubeziehen:
- Extremfall: Das Messinstrument liefert im Grunde nur Rauschen. Dann 

sollte man rationaler Weise nur das Vorwissen nutzen (unter der 
Voraussetzung, dass das Vorwissen mehr als nur Rauschen kodiert)

- Sensitivitätsanalysen überprüfen die Ergebnisse bei Heranziehen 
verschiedener (plausibler) Priors

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 
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Fazit: Bayes in der Einzelfalldiagnostik

• Ob die Berücksichtigung von spezifischem Vorwissen für meinen 
diagnostischen Fall sinnvoll ist, hängt vom Kontext ab

• Dabei stellen sich ähnliche Fragen, wie bei der Auswahl der 
„interessierenden“ Normstichprobe (siehe LE9)

Es gibt Situationen, da möchte ich…
• …spezifisches Vorwissen über die von mir getestete Person 

berücksichtigen, um die individuelle diagnostische Entscheidung zu 
verbessern, z.B. wenn ich in einem neuropsychologischen Setting 
herausfinden will, ob eine Person kognitive Defizite durch eine degenerative 
Erkrankung aufweist und Vorwissen über ihre frühere Leistungsfähigkeit oder 
aktuelle Beeinträchtigungen im Alltag vorliegt 

• …für alle getesteten Personen das gleiche Vorwissen verwenden, um 
alle Personen gleich (“fair“) zu behandeln, z.B. wenn ich in einem 
personalpsychologischen Setting Bewerberinnen basierend auf einem 
standardisierten Leistungstest auswählen will und es nicht vertretbar ist, dass 
Personen mit dem gleichen Testwert unterschiedliche Beurteilungen 
bekommen  

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 
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Fazit: Bayes & Frequentismus

• Unter flachen, uniformativen Priors (Extremfall: Gleichverteilung) sind die 
Intervallgrenzen von frequentistischen Konfidenzintervallen und 
bayesianischen HDIs sehr nah beisammen (Extremfall: identisch)
• Es stellt sich dann aber die Frage, ob die Prior, bei der eine 

numerische Übereinstimmung entsteht, überhaupt plausibel ist!
• Heißt umgekehrt: Man kann nicht automatisch von einer numerischen 

Äquivalenz beider Intervalle ausgehen
• Die Abweichung zwischen den Intervallen ist besonders groß, … 

a. wenn der Testwert in einen dünn besiedelten Bereich der Prior fällt
b. wenn der Test sehr unreliabel ist

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 
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Praxis-Tipp: Shiny-App zur Berechnung von HDIs
http://shinyapps.org/apps/Bobs_IQ/

# 19

7. Vorwissen berücksichtigen mit 
Bayesianischer Statistik 

http://shinyapps.org/apps/Bobs_IQ/
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Gesamtfazit

• Nicht nur Punktschätzer betrachten, sondern über KI (frequentistisch oder 
auch bayesianisch) immer die Unsicherheit in der Messung 
mitberücksichtigen und auch kommunizieren!

• Die Reliabilität des Tests bestimmt u.a. die Präzision der Messung
• Unreliable Tests können ein so breites KI/HDI ergeben, dass alle 

Werte von unterdurchschnittlich bis überdurchschnittlich darin 
enthalten sind (à d.h. fast alle Werte wären plausibel!)

• Dies betont noch einmal die Wichtigkeit der Verwendung reliabler 
Tests in der Einzelfalldiagnostik!

# 20

Einzelfalldiagnostik
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Das war‘s schon fast für heute …

# 21

• Nächste Sitzung Fragestunde am Donnerstag um 10.15 per ZOOM

• Link folgt über Moodle

• https://lmu-munich.zoom-
x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1

https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
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https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
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Fragen zur Nachbereitung

• Welche Aspekte sind wichtig bei der Einzelfalldiagnostik? Welche Verfahren zur 
Testauswertung kann man unterscheiden?

• Wie berechnet man ein frequentistisches KI? Von welchen Faktoren hängt dessen 
Breite ab?

• Was bedeutet „interessierende“ Normstichprobe und welche Eigenschaften der 
Normstichprobe sind relevant?

• Wie bildet man Normwerte? Was sind Prozentränge? Was muss man hier jeweils 
bei der Interpretation beachten?

• Wie kann man Testwerte klassifizieren?
• Wie sollte die mündliche/schriftliche Rückmeldung jeweils gestaltet sein?
• Welchen Vorteil hat ein bayesianischer Ansatz in der Einzellfalldiagnostik?
• Nach welchen Grundprinzipien funktioniert Bayes?

# 22
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Einzelfalldiagnostik I

Quellen zu Bayes

§ Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E. J. (2014). Robust 
misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5), 
1157–1164. http://doi.org/10.3758/s13423-013-0572-3

§ McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R 
and Stan. Chapman and Hall/CRC. 
https://github.com/rmcelreath/stat_rethinking_2024 

§ Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. 
(2015). The fallacy of placing confidence in confidence intervals. Psychonomic 
Bulletin & Review, 23, 103–123. http://doi.org/10.3758/s13423-015-0947-8

§ Wagenmakers, E. J., Morey, R. D., & Lee, M. D. (2016). Bayesian Benefits for the 
Pragmatic Researcher. Current Directions in Psychological Science, 25(3), 169–
176. http://doi.org/10.1177/0963721416643289
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